If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-14880=0
a = 1; b = 4; c = -14880;
Δ = b2-4ac
Δ = 42-4·1·(-14880)
Δ = 59536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{59536}=244$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-244}{2*1}=\frac{-248}{2} =-124 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+244}{2*1}=\frac{240}{2} =120 $
| 7+6v=-5+8v | | 2r+1/3+5/2r=25/6 | | 5(x×4)=30 | | 2(3x-4)-1=11 | | 2r+1/3-5/2r=-25/6 | | 2p^2+5p-5=0 | | -8-6+8y=4+6y | | 2x+3x+9x/2+27x/4=1300 | | 2x+3x/2=1300 | | 15(p-20)=240 | | 6+8x=6x+15 | | 6x-3+3x+29=37 | | 10y-12=37 | | 3x-3=29 | | 3(2x-1)=147 | | 18x-3=8x+4 | | (x+2)=(x+4)(x-1) | | 30-(2+7y-4(y+5))=-2(5y-6)-(7(y-1)-6y+3) | | −2x2+3x−2=0 | | −2x^2+3x−2=0 | | 3(x+1,5)+2(3+x)=-5 | | 4n+2=6(1/3n−2/3) | | 3(x+1,5)+3(3+x)=-5 | | 9x^2+6x−15=0 | | 4n+2=6(1/3n-1/2)) | | 3x+18=4x+22 | | 3q-(5q+4)=9-(8q-6) | | (4/5)x-8=3 | | 6t-18=-12 | | 7t^2+8t=0 | | 3x-10=2x-15 | | 3^t=5 |